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CHAOS IN PRODUCTION PLANNING

FARZAD HAGHIGHIRAD∗, AHMAD MAKUI AND BEHZAD ASHTIANI

Abstract. A phenomenon which is seen in some of the manufacturing
systems and production planning is chaos and the butterfly effect. The
butterfly effect points out that in case of the presence of nonlinear rela-
tions in system and incorrect estimation of initial values of variables, the
error in the estimates of system state will be intensified, and after a while
there will be a large distance between available state of system and real-
ity. Using mathematical means and computer simulation, we have tried
to demonstrate that in a production system the numerical combination of
Cycle Time (CT), Adjustment Time between existing and desired Work In
Progress (WIP), and Adjustment Time between current and desired inven-
tory can lead to chaos and butterfly effect in the behavior of the inventory
state variable. Our paper concludes with a discussion of a hypothesis that
emerged from this research.
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1. Introduction

Little research has been carried out in the field of nonlinear dynamics in
production systems and the chaos and butterfly effects in such systems. The
butterfly effect points out that in case of the presence of nonlinear relations
in system and incorrect estimation of initial values of variables, error in the
estimate of the system will be intensified, and after a while there will be a large
distance between available state of system and reality[3]. The butterfly effect
compels us to doubt conventional statistic approaches which compromise with
concept of bounded error[4]. The main focus of previous research has been in
the following domains:

a. Distinguishing the factors in production systems which result in nonlin-
ear dynamics[1, 2].
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b. Analyzing the causes of chaos in production systems with the use of
simulation and mathematical means[8].

c. Expanding some criteria for measuring the complexity and chaos in pro-
duction systems[14].

d. Expanding planning models in chaotic state[5, 13, 15].

In [1, 2], the following factors are considered as causes of dynamics in production
systems:

• Structure
• Order release
• Capacity
• Queuing policies
• Operational rules

Peters et al.[7] have examined capacity in a switched system as one of the causes
of chaos. Their main hypothesis is that the capacity of the buffers is limited;
therefore the policies should be so that they prevent the buffers from overflowing.
The authors have concluded that in return for low values of capacity, chaos is
created in the switched system.

Armbruster[7] derived a diagram similar to the bifurcation diagram in the
logistic equation after studying bucket brigade systems and considering opera-
tional rules as the cause of dynamics in production systems.

While examining the butterfly effects in demand parameters, Wang et al.
formulated a strategy for determining production lot sizing proportionate with
chaotic demand. The presented method is like that of Wagner’s Witin. The only
alteration is that the planning periods are considered much smaller. Also, the
Lyapunov [13] exponent is used for estimating the degree of chaos.

Efstathiou et al.[9] examine the relation between standards used in measuring
complexity in manufacturing systems and supply chains. The authors’ main
emphasis is on standards of information and chaos theories.

This article is different from the research summarized above in two respects:
Firstly, no specific system is considered for demonstrating chaos and the butterfly
effect; on the contrary some fixed rules are applied which exist in most production
systems. Secondly, system dynamics methodology is used for examining the
butterfly effect and chaos.

2. Problem formulation

The primary modeling and analysis tool used in this research is system dy-
namics (SD) methodology. Forrester [10] introduced SD in the early 60’s as a
modeling and simulation methodology for long-term decision-making in dynamic
industrial management problems. In this part Sterman’s[12] adjusted dynamic
model is used to model the production system in supply chain. The main logic
of Sterman’s presenting this model is the same as Jones’ in presenting a para-
metrical method in production planning. Since labor force has no influence on
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our final aim, which is discovering chaos, in this part we will consider the model
independent of labor force. Introducing the variables and parameters:

I : Inventory
WIP : Work In Progress
PSR : Production Start Rate
WAT : WIP Adjustment Time
DPS :Desired Production Start Rate
CT : Cycle Time
IC : Inventory Covering
IAT : Inventory Adjustment Time
DI :Desired Inventory
FT : Forecasting Demand
α : Forecasting Parameter
PR : Production rate
SR : Shipment Rate AFW : Adjustment For WIP
DP : Desired Production
DWIP : Desired WIP
MOPT : Minimum of Production Time
RAFI : Rate Adjustment For Inventory
DIC : Desired Inventory Covering
Actual : Actual Demand
Production consists of two subparts :Inventory and Work In Progress.
It is supposed that there are two main stocks in a production system, and

based on production system strategies goods are cast into or taken from these two
sources. These two sources are Inventory and Work In Progress. In other words
if a product is not in the final stock, i.e. Inventory, it is in the production process,
i.e. in the source of Work in Progress (WIP). Production system strategies and
external factors such as demand determine the state of trading products between
these two sources as well as their fluctuation level. The relations of variables and
parameters of the mentioned system are illustrated in the following diagram:

In the Figure5 diagram the production rate (PR) increases the inventory level
because this variable is the cause of the product entrance into the stock. On the
other hand, considering the demand forecast, the shipment rate (SR) variable
is the cause of the product exiting from the source. Thus, the main two factors
in fluctuation in inventory are production rate and shipment rate variables. Yet
because every inventory needs to save a desired inventory of product considering
the situation of the market and factory, we need an adjustment variable in the
system to cover the maladjustment in rate adjustment for inventory in case there
is a gap between the inventory level and desired inventory level. As shown in the
diagram, the production rate variable is the factor that connects the inventory
level in work in progress (WIP) and inventory. Generally, product is turned
from WIP into inventory when its production process is over, or in other words
when it has passed the production cycle time. Like inventory, the source of
the product in work in progress should also be at a desired level, because the
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Figure 1. The flow diagram of a production system

Figure 2. Actual demand

shortage of a product in production line results in production stoppage. Thus,
an adjustment variable is needed to cover the maladjustment of AFW, taking
into account available WIP and desired WIP and the measured time of WAT.

3. Examining “chaos” in a dynamic model

DPS = DP + AFW (1)
PSR = DPS (2)
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SR = FD (3)

change =
gap

t
(4)

gap = actual − FD (5)

RAFI =
DI − I

IAT
(6)

AFW =
DWIP − WIP

WAT
(7)

DWIP = CT × DP (8)
DP = Max(0, RAFI + FD) (9)

DIC = SSC × MOPT (10)

PR =
PSR

CT
(11)

DI = DIC + FD (12)
FD(t) = FD(t − dt) + (change) × dt (13)

I(t) = I(t − dt) + (PR − SR) × dt (14)
WIP (t) = WIP (t − dt) + (PSR − PR) × dt (15)

Equation 9 expresses that the desired product of a production system should
be so that it answers the forecasted demand and compensates for the maladjust-
ment of inventory. On the other hand, equation 1 considers a value for desired
production rate that includes maladjustment of WIP as well as the desired pro-
duction. In equation 2 production start rate is considered equal with its desired
value (which was calculated in equation 1). Equations 4, 5 and 13 perform the
demand forecast using exponential smoothing method[11]; equation 13 is used
to get the result of the forecasting. It should also be mentioned that the actual
demand used in this paper is shown in illustration 2. In equation 3 it has been
supposed that shipment rate, as the inventory reducer factor, equals the fore-
casted demand. Equations 6 and 7 express that the gap between inventory and
desired inventory, and the gap between WIP and its desired value should be cov-
ered in IAT and WAT. Equation 8 is the Little Equation, which expresses that
the desired WIP value equals the cycle time multiplied by desired product[16].
Equation 10 is used to keep inventory level in a desired level during the delivery
time. Equation 11 expresses that in order for a piece to be produced, it should
pass the cycle time. Equations 14 and 15 are inventory level equation and WIP
level equation.

4. Examining “chaos” in a dynamic model

In this part we examine chaos in the model using mathematical means and
computer simulation. After performing several different simulations, it was con-
cluded that under some conditions the numerical combination of the three pa-
rameters IAT, CT and WAT causes butterfly effect and chaos in the inventory.
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Simulations results divided all the possible instances of chaotic behavior into 8
below situations:

Situation.1: WAT, CT, IAT ≥ 1
Situation.2: WAT, IAT ≥ 1 and CT < 1
Situation.3: WAT, CT ≥ 1 and IAT < 1
Situation.4: CT, IAT ≥ 1 and WAT < 1
Situation.5: CT ≥ 1 and WAT, IAT < 1
Situation.6: IAT ≥ 1 and WAT, CT < 1
Situation.7: WAT ≥ 1 and IAT, CT < 1
Situation.8: WAT, IAT, CT < 1

Since simulation and mathematical confirmation for 8 situations are similar to
each other, simulation and mathematical confirmation for situations 1 and 3
are presented completely and for the rest of situations results are presented in
conclusion section.

Nonlinear dynamical systems often exhibit chaos, which is characterized by
sensitive dependence on initial values or more precisely by a positive Lyapunove
exponent. The idea of Lyapunov exponents is to define characteristic numbers
for a dynamical system that allow to classify the behaviour of the system in
a concise manner. These numbers should account for exponential convergence
or divergence of trajectories that start close to each other [6]. Notice that the
simplest formula for calculating Lyapunov exponent is:

| In+1 − In |
|I1 − I0|

Situation 1. Hypothesis: Max(0, RAFI + FD) = RAFI + FD
To analyze the butterfly effect in the model the initial value of variable is

considered to be the inventory . The Lyapunov exponent is calculated by chang-
ing I to I + ∆I . The initial conditions are judged by analyzing the Lyapunov
exponent about system sensitivity.

Proof.

I0 = I → I + ∆I

PR =
FD + DI−I

IAT + CT×[DI−I
IAT +FD]−WIP

WAT

CT

=
FD

CT
+

DI − I

IAT × WAT
+

DI − I

IAT × CT
+

FD

WAT
− WIP

WAT × CT
SR = FD

I1 = I + (PR − SR)

I1 = I +
FD

CT
+

DI − I

IAT × WAT
+

DI − I

IAT × CT
+

FD

WAT
− WIP

WAT × CT
−FD
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I → I + ∆I ⇒
[FD

CT
+

DI − I − ∆I

IAT × WAT
+

DI − I − ∆I

IAT × CT
+

FD

WAT

− WIP

WAT × CT

]

�

The effect of changing I to I + ∆I in WIP is as follow:

WIPNEW = WIPOLD + [
−∆I

IAT
− CT × ∆I

IAT × WAT
+

∆I

IAT × CT
+

∆I

IAT × WAT
]

The value inside the brackets shows amount of difference resulted from the
change. According to Equation 13 we have:

I1 = I + (PR − SR)
I2 = I + ∆I + (PR′ − SR)

|I2 − I1| = |∆I +
FD

CT
+

DI − I − ∆I

IAT × CT
+

DI − I − ∆I

IAT × WAT
+

FD

WAT
− FD

CT

− DI − I

IAT × CT
− DI − I

IAT × WAT
− FD

WAT
+

∆I

IAT × WAT × CT

+
CT × ∆I

IAT × WAT 2 × CT
− ∆I

IAT × WAT × CT 2

− ∆I

IAT × WAT 2 × CT
|

= |∆I − ∆I

IAT × CT
− ∆I

IAT × WAT
+

∆I

IAT × CT × WAT

+
∆I

IAT × WAT 2
− ∆I

IAT × WAT × CT 2
− ∆I

IAT × WAT 2 × CT
|

To calculate the Lyapunov exponent, we divide the above expression into ∆I .

= |1 − 1
IAT × CT

− 1
IAT × WAT

+
1

IAT × CT × WAT

+
1

IAT × WAT 2
−

1
IAT × WAT × CT 2

−
1

IAT × WAT 2 × CT
|

Lyapunov exponent equals Ln in the above expression. After simplifying the
product we get:

λ = Ln|1 − CT × WAT 2 + CT 2 × WAT − CT × WAT − CT 2 + WAT + CT

IAT × CT 2 × WAT 2
|

(16)
If we verify that the product of the modulus expression is smaller than one,

it will be concluded that in the first situation the system is not chaotic, because
the Lyapunov exponent is negative.

Lemma 1. If |1 − X | ≤ 1 then 0 ≤ X ≤ 2



746 F.Haghighirad et al.

The fractional expression in modulus is positive because:

CT × WAT 2 > CT × WAT

CT 2 × WAT > CT 2

If we prove that the fractional expression in modulus is equal or smaller than
2, we can conclude that the system is not capable of producing butterfly effect.

Theorem 1. Suppose:A = IAT × CT 2 × WAT 2

−1 ≤
WAT − CT × WAT

A
≤ 0 (17)

0 <
CT × WAT 2

A
≤ 1 (18)

from (17) and (18) we have:

0 <
WAT − CT × WAT + CT × WAT 2

A
≤ 1 (19)

On the other hand:

CT 2 ≥ CT

0 <
CT − CT 2

A
≤ −1

→ 0 <
CT 2 × WAT − CT 2 + CT

A
≤ 1 (20)

Now from (19) and (20) we have:

| 1 − CT × WAT 2 + CT 2 × WAT − CT × WAT − CT 2 + WAT + CT

IAT × CT 2 × WAT 2
|≤ 1

Therefore the Lyapunov exponent cannot be positive, so in this situation the
system is not chaotic. Now suppose Max(0, RAFI + FD) = RAFI + FD. We
will have:

PR =
−WIP × CT

WAT × CT

I1 = I − (
WIP

WAT × CT
− FD)

I2 = I + ∆I − (
WIP

WAT × CT

⇒ |I2 − I1|
∆I

= 1, Ln|1| = 0

Therefore increasing ∆I is not effective.

Situation 3.



Chaos in production planning 747

Table 1. Two example

Group 1 Group 2
λ = 2.39 λ = −0.197

CT=1 WAT=0.1 IAT=1 CT=2 WAT=0.9 IAT=4

Figure 3. Time diagram of inventory. In the red diagram, the
initial value of inventory is zero. In the blue diagram the initial
value of inventory is one

a. Mathematical analysis: Hypothesis: Max(0, RAFI +FD) = RAFI +FD
Because CT > 1, we can use Equation (16) that is given in situation one to
analyze the problem.

λ = Ln|1 −
CT × WAT 2 + CT 2 × WAT − CT × WAT − CT 2 + WAT + CT

IAT × CT 2 × WAT 2
|

In this situation also we cannot derive a general rule about the sign of the
Lyapunov exponent, because WAT < 1 causes a reduction in the denominator.
Thus, whether the Lyapunov exponent is negative or positive depends on the
numerical combination of IAT , CT and WAT . Two series of example parame-
ter values tabulated in Table 1. For the numbers in group one the Lyapunov
exponent will be positive, and for numbers in group two the Lyapunov exponent
will be negative.

b.Simulation: The result of the simulation for the values in the first group is
written below. As you see, for a change of 1 in the initial value of I , the two
diagrams find a great distance which is evidence of the butterfly effect.

The attractor related to this situation is suggested by the phase plot, depicted
in Figure 4.

The Figure 5 shows simulation for the values in the second group. As noted
in the mathematical analysis, the system is not sensitive to its initial values.
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Figure 4. Attractor for the values in group one of situation four

Figure 5. Time diagram for the values in group two of situ-
ation four. As you see, a change of one in inventory does not
make a great difference.

5. Conclusion

This paper has examined the capability of trigger chaos in a dynamic model
of a production system. After performing different simulations, it was concluded
that in some situations the numerical value of the parameters of adjustment time
between desired and current inventory (IAT), cycle time (CT), and adjustment
time between desired and current WIP (WAT) can result in chaos. Thus, the
numerical combination of the three parameters was divided into 8 different situ-
ations considering whether it was smaller or greater than 1. These divisions are
elaborated in the third part of the essay. Using mathematical confirmation and
computer simulation, the capability of forming chaos was analyzed in any of the
8 mentioned situations.
If WAT, CT, IAT ≥ 1, there will be no butterfly effect and chaos in the system,
because the Lyapunov exponent is negative, as was shown in the first situation.
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In the second situation in which WAT, IAT ≥ 1 and CT < 1, the mathematical
confirmation verified that the Lyapunov exponent will always be negative, there-
fore there would be no butterfly effect. In the other 6 situations, chaos in the
system cannot be explained using mathematics. In these situations the existence
or nonexistence of chaos in system depends on the numerical combination of the
three parameters IAT, WAT, and CT. Generally, it can be said that the requisite
condition for existence of butterfly effect is that one of the two parameters IAT
or WAT should be smaller than 1. Their being smaller than one shows a kind of
acceleration in system to cover maladjustments. In all the situations in which
the system shows chaos, the drawn attractors are similar, and the differences lie
upon the reduction and increases in phase space and spatial position, and this
shows a sort of order in disorder.
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