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Abstract: In this study we have proposed an integrated inventory model for two products having fixed 
demand. One of the aforementioned products is assumed to be an ingredient for the other product and 
having an independent demand in the market. The output of the proposed model is the economic level for 
producing the products with minimum costs. Considering the relations among parameters in the model, the 
Total cost optimization algorithm for finding the optimum amount of the variables is discussed in addition 
to a numerical example and its sensitivity analysis. Based on the sensitivity analysis, when one of the 
products is playing two roles, as indicated above, any change in cost-based and non-cost-based parameters 
can affect the decision variables of both products. The proposed model is usable for various industries as 
dairy, pipe and cloths manufacturing.  
 
Key words: Inventory model • Integrated • Economic production level 

 
INTRODUCTION 

 
 In many industries, some of the products have two 
distinct roles. On one side, they are the finished product 
which can be supplied to the market and on the other 
side, they can also play the role of an ingredient or a 
semi -finished product for producing other finished 
products. This is a common feature for products in 
dairy and pipe-manufacturing industries. As an 
example, in dairy industry, yogurt is a finished product 
which has a definite demand in the market, however it 
can also be an ingredient for producing Dough, which is 
a Persian non-alcoholic drink resulted from fusion of 
yogurt, water, salt and some other additives. In 
inventory management literature, the inventory systems 
have been classified based on the dependency and 
independency of the products demand. As some 
examples,  MRP  is  an  inventory  system when we 
have a dependent demand and Order Point System is 
the one for independent demand [1]. Each of 
aforementioned systems has been studied and 
developed by various researchers, some of which we 
will mention next in this study.  
 MRP is an Information System which is used for 
Managing the inventory and scheduling the ordering of 
products with dependent demand [2]. One of the main 
woes in MRP and other inventory systems is 
determining  the  order amount which is called lot 
sizing  determination . The response to this question 
will be the input of MRP and production scheduling 
systems, when the demand is dependent and 

independent, respectively. A lot of work has been done 
in order to find an appropriate response to this question. 
First model of this kind is called Economical Order 
Quantity (EOQ) and referred to Harris. This model has 
been developed based on a fixed demand assumption 
[3]. A simple expansion to EOQ, the Economic 
Production Quantity (EPQ) is reached. In this model, 
the product is assumed to be received or produced 
gradually and not at once [4]. The aforementioned 
models have also been developed for the conditions 
when there is a backordering and shortage [5]. In recent 
years, the researchers have made the EOQ model more 
appropriate for the real world by releasing some of its 
unrealistic assumptions. Among them we can mention: 
Salameh and Jaber that omitted the assumption of 
equality of the quality of all received orders [6], Tsou 
that  took  in  to  account  the  quality  costs [7] and 
Wee et al. [8] that considered the inequality of orders 
quality and also the shortage of orders simultaneously 
[8]. In many systems, the demand doesn’t present a 
monotonous behavior and varies from period to period. 
Under such conditions, using static models will make 
considerable errors. Wagner and Whithin introduced a 
dynamic programming model in which the demand is a 
function of time [9]. Silver and Meal proposed a 
heuristic method that finds the optimum order quantity, 
minimizing the storage and delivery costs [10].  
 There is another category of inventory 
management models in which the model deals with 
more than one entity and the objective is minimizing 
the   costs   or   maximizing  the  profits  of  all  entities,  
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simultaneously. Integration concept in inventory 
management models was first proposed by Goyal. In  
his model the objective was to minimize the costs of 
both buyer’s and supplier’s, simultaneously in one 
model [11]. In such models the supplier demand is 
dependent on the buyer demand. Cohen and lee 
developed an integrated supply chain model for 
determining  the  material   requiremzents  strategy 
[12].  Gyana    and   Bhaba   proposed  a   model  for 
one entity and its objective was to minimize the 
inventory costs of ingredients and finished products, 
simultaneously [13]. Ganeshan proposed an ordering 
point  model  for  minimizing the overall logistics cost 
of retailers and warehouse [14]. Yang and Wee 
developed an integrated inventory model for buyers and 
sellers in which the products are assumed to be 
deteriorative [15].  
 Gnonia et al. [16] present a case study from the 
automotive industry. This study deals with lot sizing 
and scheduling problem of a multi-site manufacturing 
system with capacity constraints and uncertain multi-
product and multi demand [16]. Lee and kim propose a 
hybrid approach combining the analytic and simulation 
model for production-distribution planning in supply 
chain, considering capacity constraints [17]. Byrne and 
baker study a hybrid algorithm combining mathematical 
programming and simulation models of manufacturing 
system for the multi-period and multi-product 
production planning problem [18].  
 Saharidis et al. [19] propose a model for comparing 
Centralized versus decentralized production planning. 
Two plants are considered, that the product of one plant 
is input of other plant [19].  
 Our   paper    contributes    to   the   literature  in 
two aspects: firstly, the  discussed  integration  is an 
intra-firm integration, in which there are two products 
which  not  only have  independent  market  demand, 
but also one of them can be the ingredient of the other 
one .  Secondly ,  using  a proposed mathematical 
model, we discuss the applicability of transforming the 
finished products to each other. This model can be 
utilized in several industries as dairy, cloths and pipe 
production. 
 

 
 
 

 
PROBLEM DEFINITION 

 
 Assume two products as A and B. Product B not 
only is an ingredient for product A, but also has 
independent demand in the market. As an example in 
dairy industry, yogurt can have the role of B and 
“Dough”, which described earlier in this paper and is 
derived from yogurt, can have role of A. Under such 
conditions in which the main input of a product is 
another product of the firm, the inventory management 
strategies of the latter product will have a definite effect 
on the former one. In such a situation, it is necessary to 
utilize an integrated model for determining the 
economic production quantities (EPQ) of products A 
and B. Figure 1 presents the structure of such an 
integrated model. 
 
Assumptions: Demands for products A and B are 
deterministic and known. 
 
• Cost parameters for A and B are known constants. 
• Shortages in A and B is not permitted. 
• Production rates of A and B are greater than their 

demands rates. Also the production rate of B is 
greater than sum of production rate of A and 
demand of B. 

• Consumption rate of B for producing A is one to 
one (one   unit  of  B  is  utilized  in  producing one 
unit of A). 

• There are m runs for product A over one run of 
product B. 

 
Model parameters and variables 
DA: Demand rate for A in a unit of time, 
DB: Demand rate for B in a unit of time, 
PA: Production rate for A in a unit of time, 
PB: Production rate for B in a unit of time, 
hA: Inventory holding cost for product A in a year, 
hB: Inventory holding cost for product B in a year, 
KA: Setup cost of production for A, 

 
 
 
 
Fig. 1: The inventory model structure for product A and product B products  
 

Product “A” Product “B” Producin
g “A” 

Demand “A” 

Demand “B” 

Producing “B” 
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Fig. 2: Producing product “B” is finished during producing product “A” 
 

 
 
Fig. 3: Producing product “B” is finished during consumption phase of product A 
 
KB: Setup cost of production for B, 
QA: Economic production quantity (EPQ) for A, 
QB: Economic production quantity (EPQ) for B, 
m: Times of producing A during one time production 

of B, 
K: The period in which production of B is ceased and 

its consumption starts, 
T: Time horizon for optimization, 
t: Time horizon for producing A, 
 

Figure 2 depicts the inventory behavior in the 
warehouse of A and B products, when three times 

production of A happens during one time production of 
B. In this Figure, we assume that production of B is 
finished during the production of A. In Fig. 3 we 
assume that the production of B is finished during the 
consumption of A.  
 When both products are produced the inventory 
level of product B increases with rate PB-DB-PA. This is 
because B has an independent demand in the market 
and in addition is an ingredient for producing A. When 
the production of A ceases, the aforementioned slope 
increases to PB-DB. This process continues till B 
reaches  its  EPQ. During  the  consumption  phase of B 

t ′ 

t ′ 
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and during the production phase of A the slope of 
consumption of B is -DB-PA. Because it is necessary for 
B to supply not only its own demand, but also A 
demand. During the consumption of A this slope 
reaches -DB. 
 

MODEL DISCUSSION 
 
 As the production of the product B can be finished 
during either the production or the consumption of 
product A, we have considered two various states for 
developing proposed model in. we will discuss these 
states, which have been presented in Fig. 2 and 3. 
Setup and holding costs are the main elements of the 
objective function. 
  
Setup costs: Calculating  setup  cost  for  the case of 
Fig. 2 and 3 are the same. We utilize equation 1 for 
calculating the setup cost for product A. This equation 
is based on the fact that based on our assumptions there 
are m times of runs for product A. 
 
                                   S1 = mKA (1) 
 
 During the planning period (T), product B has one 
time run. This is the premise for calculating the setup 
cost for product B, using Equation (2).  
 
                                     S2 = KB  (2) 
 
We can reach total setup costs through Equation (3). 
 
                               S = mKA + KB (3) 
 
Holding costs: We can reach the holding cost of 
product A, using the total sum of areas of m triangles in 
Fig. 2 and 3. This is represented in Equation 4. 
 

                     A
A A A

mh TH (t(P D )
2 m

 = − 
 

 (4) 

 
 Reaching the holding cost for product B, we need 
to calculate the area of Fig. 2 and 3. See appendix.  
Therefore total holding cost can be calculated using 
equation 5. 
 
                                 H = HA + HB (5) 
 
Total cost and model constraints: Total cost function 
is a sum function of holding and setup costs. Equation 6 
presents this function per each time unit. 
 

                                
(H S)

TC
T
+

=  (6) 

 
 Most important constraint of the model is the fact 
that the stocked inventory of product B, after finishing 
its production, must be enough to supply product A and 
product B market demands. This constraint can be 
presented using equations 14 (see appendix) and 7-9: 
 

               B A A
A B

A

D (P D )t
(P D )t

D
−

φ = + +  (7) 

 

         A B B
T

(m k) (P D )(t t (k 1) )
m

τ = − φ + + − + −  (8) 

 
                                   βn - τ = 0 (9) 
 
 Concerning the assumption of first state that the 
production of product B finishes during the production 
of product A, constraint 10 is necessary for solving the 
model. 
 
                                       t′ - t ≤ 0 (10) 
 
Finally, the final model for the first state of the problem 
(Fig. 2) is as follows: 
 

                                 n

Min  TC
st:

0
t t 0
t 0
k,m   integer

β − τ =
′ − ≤
′ ≥

 (11) 

 
 In the state of Fig. 3, product B production finishes 
during the consumption phase of product A, the 
equation 8 must also be modified, as equation 12. 
 

    A A
B B

A

T (P D )t
(m k) D ((k 1) t t )

m D
−′τ = − φ + − + + −  (12) 

 
Having done the aforementioned modifications, the 
total model changes as follow. 
 

                                
n

A A

A

Min  TC
st:

0

(P D )tt 0
D

t 0
k,m   integer

′ ′β − τ =

−′ − ≤

′ ≥

 (13) 

 
 Determining T, t′ variables, we need to determine 
m, k,   simultaneously.    We   have   utilized  numerical  
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method for doing so which is discussed next in this 
paper. 
 
Model convexity: Concerning the fact that all the 
constraints in the model are linear, the feasible area is 
convex. Now, we need to prove the convexity of 
objective function for all  points in feasible area, which 
depends on expression 14 [20]. 
 

                                  
t

(t ,T)H 0
T

′ ′ ≥ 
 

 (14) 

 
where H represents Hessian matrix. 
Considering expression 14, we reach equation 15. 
 

        

2
A B B B B B

3 2

B B B B
2

A B

2mK 2K h t P h t P
tT T(t ,T)
Th t P h P

TT
2mK 2K

T

 ′ ′+ −
  ′  ′   ′  − 
 

+
=

 (15) 

 
 As the amounts of m, KA, KB, T are always 
positive, expression 14 will be correct and objective 
function is also convex. 
 

TOTAL COST OPTIMIZATION ALGORITHM 
 
 As we mentioned earlier, for given parameters and 
m,k we can easily find the optimal values of T, t′. But 
the optimal values of integer variables cannot be found 
through an analytical procedure. So we propose the 
following simple search procedure to find optimal 
decision variables.  
 
Step 0: Determine the values of the system parameters 
PA, DA, PB and DB, as well as the cost factors KA, KB, 
hA and hB. 
 
Step 1: Select the problem state. As an example we 
consider Fig. 2 state. 
 
Step 2: For m = 1, k = 1, find the optimum amounts of 
T, t′, using a computational software. If the problem has 
a feasible solution go to step 3, otherwise go to step 4. 
 
Step 3: Find TCm, k using equation (6) and put it in 
TCmin. 
 
Step 4: Add 1 unit to m and let’s k = 1 then solve the 
problem using new m, k. If there is a feasible solution, 
go to step 5, otherwise go to step 6. 

 
Step 5: If TCm,k≤TCm-1,k, let’s TCmin equals TCm,k, 
otherwise go to step 8. 
 
Step 6: Add 1 unit to k  and solve the problem. If there is 
not a feasible solution, go to step 6-1 otherwise check 
the condition of: TCm,k≤TCm,,k-1. If the condition is held, 
go to step 7, otherwise go to step 8. 
 
Step 6-1: If m>k  then  go  to  step  6  otherwise  go  to 
step 4.  
 
Step 7: Let’s TCmin equals TCm,k. If m>k then go to step 
6, otherwise go to step 4. 
 
Step 8: tT ′,  have their optimum amounts, upon which 
calculate EOQ. 
 

SENSITIVITY ANALYSIS  
 
Assume the model parameters as below: 
 

A A A A

B B B B

P 40,  D 30,  K 3000,  h 5,
P 110,  D 60,  K 10000, h 5

= = = =
= = = =

 

 
 Based on these parameters, the optimum solution is 
reached in m = 1, k = 1 and is as follows:  
 

QA = 331.2, QB  = 1821.6 
 
 In this part, the system responses is discussed 
based on the changes in parameters. For each cost 
parameter, we have considered 9 different levels as: 
1/5, ¼, 1/3, ½, 1, 2, 3, 4, 5, which are equal to costs in 
numerical example. 
 Figure 4 presents that by changing the setup cost of 
product A, QA, QB and TC are increased that the slope 
of EPQ for product B is more than the slope of EPQ for 
product A. since Increasing in EPQ for product A 
means increasing the production time of product A and 
also product B is ingredient of product A. So, we can 
conclude that the model behavior is close to what 
happens in reality. 
 Figure 5 depicts the effect of product A holding 
cost on EPQs and TCs. As is indicated in Fig. 5, 
increasing the holding cost of product A, causes the 
EOQs to decrease. This  is mainly because, increase in 
holding costs leads to increase in warehousing costs in 
comparison to fixed and setup costs, making the 
production in smaller batches more economical. As 
product B is an ingredient for product A, so any 
decrease in EPQ of product A, will decrease the EPQ of 
product B as well. Increase in costs is mainly because 
any   decrease  in  EPQs,  will  decrease  the  production  
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Fig. 4: Effect of KA on the system 
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Fig. 5: Effect of hA on the system 
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Fig. 6: Effect of KB on the system 
 
cycle, which increases the setup cost per each unit of 
time. 
 Figure 6 presents the effect of changes in setup cost 
of product B on EPQs and TCs. By increasing the setup 
cost of product B, the slope of increase in product B 
EPQ, is greater than the slope of increase in product A 
EPQ. Here, due to increase in setup cost, it is more 
economical to produce the product B in larger batches. 
As product B is also an ingredient for product A, any 
changes in setup cost of this product will have some 
effects on product A EPQ. 
 Figure 7 shows the effect of holding cost of 
product B on EPQs and TCs. Any increase in holding 
cost of product B, leads to decreases in product B EPQs 
and increase in TCs. 
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Fig. 7: Effect of hB on the system 
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Fig. 8: Effect of PB on the system 
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Fig. 9: Comparison between the costs of two states in 

terms of KA 
 
 Figure 8 depicts the model behavior against the 
non-cost parameter of production capacity of product B. 
Increasing the production capacity of product B, causes 
QA and QB to decrease and TC to increase with a 
decreasing slope. Increase in production capacity 
without any increase in demands, causes the holding 
cost and so the overall costs to increase to soar. 
 Figure 2 and 3 present two various states of the 
problem. As discussed earlier, in the first state, the 
production of product B, ceases during the production 
phase of product A, however in the second phase, this 
happens during the consumption phase of product A. 
Figure 9-11   present   some  comparisons  between  the  
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costs of two states, by changing some cost parameters. 
As indicated in the figures, as the inventory level in 
second state is always more than is level in first state, 
the cost of first state is invariably lower than the cost of 
second state.  
 In all aforementioned states, the optimum 
quantities for k and m are: m = 1, k = 1. Concerning the 
nine levels we considered for each parameters and the 
results of sensitivity analysis, the optimum solution will 
most probably reached in m = 1, k = 1. This problem 
has been solved for more than 45 various states and 
always the optimum response is gained in m = 1, k = 1. 
 

CONCLUSIONS AND FUTURE RESEARCH 
 
 The proposed model in this study is for analyzing 
the inventory system with two products , which not only 
have fixed demands in market, but also one of them is 
an ingredient for the other one. For simplicity purposes, 
we have assumed that the productions of both products 
have been started simultaneously and during one run of 
the ingredient, several runs of the next product happen. 
We have developed the model for two various states. 
The optimum amounts for the decision variables are 
reached using the solution procedure and software for 
non-linear programming. Finally, the special features of 
the model are analyzed, using sensitivity analysis. 
Results show that when two products are dependent, 
production wise, any change in cost-based and non-
cost-based parameters affects the amount of decision 
variables in both products. 
 The result of this paper is applicable for many 
industries, in which their semi-finished products also 
have an independent demand in the market. Some 
examples are dairy, pipe-production and clothes 
industries. 
 The discussed concept in this paper can be 
expanded as: 
 
• Utilizing probability theory for discussing the 

demands in the market. 
 
Appendix 
 
Calculating the area of Fig. 2, Equation 16, 17, 18 and 
19 can be utilized. 
 
                       1 B B AM (P D P )t= − −  (16) 

 

                       1 B B
T

N ( t)(P D )
m

= − −  (17) 

 
                         2 A BM (P D )t= +  (18) 

 

                             2 B
T

N ( t)D
m

= −  (19) 

 
 As is indicated in Fig. 2, the production of product 
B continues till the k th triangle of product A 
(Production phase of product A). Afterwards the 
demands for product B, which are market and product 
A demands to product B, is supplied through the 
inventory of product B. During the production phase of 
product B, there are k-1 triangles of product A and the 
inventory volume rate of product B is increasing. For 
each of these triangles, there is an area for product B. 
These areas have increasing rate till k-1th triangle, 
making an arithmetical progression with common 

difference of 1 1(M N ) T
m
+

. Therefore for calculating the 

area of product B curve, we utilize the sum of 
arithmetical progressions, presented in equation (20). 
 

   1 1 1
B1 B 1 1

k 1 k M T k N T N TH h ( ) M t N t
2 m m m
−  = + − − −  

 (20) 

 
 Production-based area for product A is calculated 
through m-k  triangles. This is in consumption phase of 
product B and is calculated using another arithmetical 

progression with common difference of 2 2(M N )T
m
+

. 

We can reach the production-based area of m-k  
triangles, taking in to account the holding cost, through 
Eequation 21. 
 

        
2 2 2

B2 B

2 2

T
N ( t) t(2N M )

m k mH h ( )
T2 (m k 1)(N M )
m

 − + + −  =
 + − − +  

 (21) 

 
k th triangle representing the time when the production 
of product B is finished during the production of 
product A and the consumption of product B starts. The 
production area of k th triangle can be calculated using 
equations 22, 23, 24 and 25. 
 
                   2k 2 1 1(k 1)M (k 1)N−β = − + −  (22) 

 

         n 2k 2 B A B B
T

(P P D )(t (k 1) )
m−β = β + − − − −  (23) 

 

            2k 1 n A B B
T

(P D )(t t (k 1) )
m−β = β − + − + −  (24) 

 

                        2k 2 k 1 B
T

D ( t)
m−β = β − −  (25) 
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 Taking into account the holding cost, in addition to 
equations 22-25, the production-based area for kth 
triangle is reached using equation 26. 
 

             

(

)

B3 B B 2k 2

B
n 2k 2

B 2 k 1

B
n 2k 1

2

2k B

TH h (t (k 1) )
m

T
(t (k 1) )

m( )
2

T
(t t (k 1) )

m
T(t t (k 1) )
m( )

2
T( t)T m( t) D

m 2

−

−

−

−

= − − β

− −
+ β −β

+ − + − β

− + −
+ β −β

−
+ − β +

 (26) 

 
Finally total holding cost for product B is: 
 

B B1 B2 B3H H H H= + +  
 
 In the second state, production of product B 
finishes during the product A consumption (Fig. 3). In 
this states the equations 23-25 change to the followings, 
but the other equations remain the same. 
 

         n 2k 1 B B B
T

(P D )(t (k 1) t)
m−′β = β + − − − −  (23) 

 
                      2k 1 1 1kM (k 1)N−β = + −  (24) 
 

                     2k n B B
T

D (k t )
m

′β = β − −  (25) 

 
 Considering the equations 23-25, the production 
area of k th triangle is as follows. 
 

(

)

'
B3 B 2k 2 1 2k 1 B

B
n 2k 1

B
2k B n 2k

t T
H h t M (t (k 1) t)

2 m
T

(t (k 1) t)
m( )

2
T

(k t )T m(k t ) ( )
m 2

− −

−

= β + + β − − −

− − −
′+ β −β

−
′+β − + β −β

(26) 

 
Finally total holding cost for product B in Fig. 3 is: 
 

'
B B1 B2 B3H H H H= + +  
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